Übung
$\left(\csc\left(x\right)\right)\left(1-\cos^2\left(x\right)\right)\left(\cot\left(x\right)\right)$
Schritt-für-Schritt-Lösung
Learn how to solve faktorisierung problems step by step online. Expand and simplify the trigonometric expression csc(x)(1-cos(x)^2)cot(x). Applying the trigonometric identity: 1-\cos\left(\theta \right)^2 = \sin\left(\theta \right)^2. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\csc\left(x\right)\sin\left(x\right)^2, b=\cos\left(x\right) und c=\sin\left(x\right). Wenden Sie die Formel an: \frac{a^n}{a}=a^{\left(n-1\right)}, wobei a^n/a=\frac{\cos\left(x\right)\csc\left(x\right)\sin\left(x\right)^2}{\sin\left(x\right)}, a^n=\sin\left(x\right)^2, a=\sin\left(x\right) und n=2.
Expand and simplify the trigonometric expression csc(x)(1-cos(x)^2)cot(x)
Endgültige Antwort auf das Problem
$\cos\left(x\right)$