Wenden Sie die Formel an: $\frac{a}{x^b}$$=ax^{-b}$, wobei $a=1$ und $b=1-2p$
Wenden Sie die Formel an: $\int x^ndx$$=\frac{x^{\left(n+1\right)}}{n+1}+C$, wobei $n=-\left(1-2p\right)$
Vereinfachen Sie den Ausdruck
Wenden Sie die Formel an: $\left[x\right]_{a}^{b}$$=eval\left(x,b\right)-eval\left(x,a\right)+C$, wobei $a=0$, $b=1$ und $x=\frac{x^{2p}}{2p}$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!