Wenden Sie die Formel an: $\int\frac{n}{x^2+b}dx$$=\frac{n}{\sqrt{b}}\arctan\left(\frac{x}{\sqrt{b}}\right)+C$, wobei $b=9$ und $n=1$
Hinzufügen der anfänglichen Integrationsgrenzen
Wenden Sie die Formel an: $\left[x\right]_{a}^{b}$$=\lim_{c\to a}\left(\left[x\right]_{c}^{b}\right)+C$, wobei $a=- \infty $, $b=3$ und $x=\frac{1}{3}\arctan\left(\frac{x}{3}\right)$
Wenden Sie die Formel an: $\left[x\right]_{a}^{b}$$=eval\left(x,b\right)-eval\left(x,a\right)+C$, wobei $a=c$, $b=3$ und $x=\frac{1}{3}\arctan\left(\frac{x}{3}\right)$
Bewerten Sie die resultierenden Grenzen des Integrals
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!