Themen

Übung

$\int8cos^4xdx$

Schritt-für-Schritt-Lösung

Learn how to solve trigonometrische integrale problems step by step online. int(8cos(x)^4)dx. Wenden Sie die Formel an: \int cxdx=c\int xdx, wobei c=8 und x=\cos\left(x\right)^4. Wenden Sie die Formel an: \int\cos\left(\theta \right)^ndx=\frac{\cos\left(\theta \right)^{\left(n-1\right)}\sin\left(\theta \right)}{n}+\frac{n-1}{n}\int\cos\left(\theta \right)^{\left(n-2\right)}dx, wobei n=4. Wenden Sie die Formel an: x\left(a+b\right)=xa+xb, wobei a=\frac{\cos\left(x\right)^{3}\sin\left(x\right)}{4}, b=\frac{3}{4}\int\cos\left(x\right)^{2}dx, x=8 und a+b=\frac{\cos\left(x\right)^{3}\sin\left(x\right)}{4}+\frac{3}{4}\int\cos\left(x\right)^{2}dx. Multiplizieren Sie den Einzelterm 6 mit jedem Term des Polynoms \left(\frac{1}{2}x+\frac{1}{4}\sin\left(2x\right)\right).
int(8cos(x)^4)dx

no_account_limit

Endgültige Antwort auf das Problem

$2\cos\left(x\right)^{3}\sin\left(x\right)+\frac{3}{2}\sin\left(2x\right)+3x+C_0$

Wie sollte ich dieses Problem lösen?

  • Wählen Sie eine Option
  • Weierstrass Substitution
  • Produkt von Binomischen mit gemeinsamem Term
  • Mehr laden...
Sie können eine Methode nicht finden? Sagen Sie es uns, damit wir sie hinzufügen können.
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Ihr persönlicher Mathe-Nachhilfelehrer. Angetrieben von KI

Verfügbar 24/7, 365.

Vollständige Schritt-für-Schritt-Lösungen für Mathe. Keine Werbung.

Enthält mehrere Lösungsmethoden.

Laden Sie Lösungen im PDF-Format.

Premium-Zugang über unsere iOS- und Android-Apps.

Schließen Sie sich 500k+ Schülern bei der Lösung von Problemen an.

Wählen Sie Ihren Plan. Jederzeit kündigen.
Zahlen Sie $39,97 USD sicher mit Ihrer Zahlungsmethode.
Bitte warten Sie, während Ihre Zahlung bearbeitet wird.

Ein Konto erstellen