Übung
$\int2xn^{4x}\sin\left(5x\right)dx$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the integral int(2xn^(4x)sin(5x))dx. Wenden Sie die Formel an: \int cxdx=c\int xdx, wobei c=2 und x=xn^{4x}\sin\left(5x\right). Wir können das Integral \int xn^{4x}\sin\left(5x\right)dx lösen, indem wir die Methode der Integration durch Teile anwenden, um das Integral des Produkts zweier Funktionen mit der folgenden Formel zu berechnen. Identifizieren oder wählen Sie zunächst u und berechnen Sie die Ableitung, du. Identifizieren Sie nun dv und berechnen Sie v.
Find the integral int(2xn^(4x)sin(5x))dx
Endgültige Antwort auf das Problem
$-\frac{2}{5}x\cos\left(5x\right)+\frac{2}{25}\sin\left(5x\right)+C_0$