Themen

Übung

$\int x^2\cos\ln\left(2x\right)dx$

Schritt-für-Schritt-Lösung

Learn how to solve problems step by step online. int(x^2cos(x)ln(2x))dx. Wir können das Integral \int x^2\cos\left(x\right)\ln\left(2x\right)dx lösen, indem wir die Methode der Integration durch Teile anwenden, um das Integral des Produkts zweier Funktionen mit der folgenden Formel zu berechnen. Identifizieren oder wählen Sie zunächst u und berechnen Sie die Ableitung, du. Identifizieren Sie nun dv und berechnen Sie v. Lösen Sie das Integral und finden Sie v.
int(x^2cos(x)ln(2x))dx

no_account_limit

Endgültige Antwort auf das Problem

$\sin\left(x\right)\ln\left|2x\right|-x+\frac{x^3}{18}+\frac{-x^5}{600}+\frac{x^7}{35280}+C_0$

Wie sollte ich dieses Problem lösen?

  • Wählen Sie eine Option
  • Weierstrass Substitution
  • Produkt von Binomischen mit gemeinsamem Term
  • Mehr laden...
Sie können eine Methode nicht finden? Sagen Sie es uns, damit wir sie hinzufügen können.
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Ihr persönlicher Mathe-Nachhilfelehrer. Angetrieben von KI

Verfügbar 24/7, 365.

Vollständige Schritt-für-Schritt-Lösungen für Mathe. Keine Werbung.

Enthält mehrere Lösungsmethoden.

Laden Sie Lösungen im PDF-Format.

Premium-Zugang über unsere iOS- und Android-Apps.

Schließen Sie sich 500k+ Schülern bei der Lösung von Problemen an.

Wählen Sie Ihren Plan. Jederzeit kündigen.
Zahlen Sie $39,97 USD sicher mit Ihrer Zahlungsmethode.
Bitte warten Sie, während Ihre Zahlung bearbeitet wird.

Ein Konto erstellen