Wenden Sie die Formel an: $\int\sin\left(\theta \right)^n\cos\left(\theta \right)^mdx$$=\frac{-\sin\left(\theta \right)^{\left(n-1\right)}\cos\left(\theta \right)^{\left(m+1\right)}}{n+m}+\frac{n-1}{n+m}\int\sin\left(\theta \right)^{\left(n-2\right)}\cos\left(\theta \right)^mdx$, wobei $m=3$ und $n=11$
Das Integral $\frac{5}{7}\int\sin\left(x\right)^{9}\cos\left(x\right)^3dx$ ergibt sich: $\frac{-5\sin\left(x\right)^{8}\cos\left(x\right)^{4}}{84}-\frac{1}{21}\sin\left(x\right)^{6}\cos\left(x\right)^{4}-\frac{1}{28}\sin\left(x\right)^{4}\cos\left(x\right)^{4}+\frac{-\sin\left(x\right)^{2}\cos\left(x\right)^{4}}{42}+\frac{-\cos\left(x\right)^{4}}{84}$