Wenden Sie die Formel an: $\int cxdx$$=c\int xdx$, wobei $c=\ln\left(y\right)$ und $x=x^6$
Wenden Sie die Formel an: $\int x^ndx$$=\frac{x^{\left(n+1\right)}}{n+1}+C$, wobei $n=6$
Wenden Sie die Formel an: $a\frac{b}{c}$$=\frac{ba}{c}$, wobei $a=\ln\left(y\right)$, $b=x^{7}$ und $c=7$
Da das Integral, das wir lösen, ein unbestimmtes Integral ist, müssen wir am Ende der Integration die Integrationskonstante hinzufügen $C$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!