Übung
$\int\left(7x-10\right)^8\:x^4dx$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the integral int((7x-10)^8x^4)dx. Schreiben Sie den Integranden \left(7x-10\right)^8x^4 in erweiterter Form um. Erweitern Sie das Integral \int\left(5764801x^{12}-65883440x^{11}+329417200x^{10}-941192000x^{9}+1680700000x^{8}-1920800000x^{7}+1372000000x^{6}-560000000x^{5}+100000000x^4\right)dx mit Hilfe der Summenregel für Integrale in 9 Integrale, um dann jedes Integral einzeln zu lösen. Das Integral \int5764801x^{12}dx ergibt sich: \frac{5764801}{13}x^{13}. Das Integral \int-65883440x^{11}dx ergibt sich: -65883440\left(\frac{x^{12}}{12}\right).
Find the integral int((7x-10)^8x^4)dx
Endgültige Antwort auf das Problem
$\frac{5764801}{13}x^{13}-\frac{16470860}{3}x^{12}+\frac{329417200}{11}x^{11}-94119200x^{10}+\frac{1680700000}{9}x^{9}-240100000x^{8}+196000000x^{7}-\frac{280000000}{3}x^{6}+20000000x^{5}+C_0$