Übung
$\int\frac{4x^2+2x-1}{x^4-2x^2-8}dx$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. int((4x^2+2x+-1)/(x^4-2x^2+-8))dx. Schreiben Sie den Ausdruck \frac{4x^2+2x-1}{x^4-2x^2-8} innerhalb des Integrals in faktorisierter Form um. Umschreiben des Bruchs \frac{4x^2+2x-1}{\left(x^{2}+2\right)\left(x+2\right)\left(x-2\right)} in 3 einfachere Brüche durch partielle Bruchzerlegung. Erweitern Sie das Integral \int\left(\frac{-\frac{1}{3}x+\frac{3}{2}}{x^{2}+2}+\frac{-11}{24\left(x+2\right)}+\frac{19}{24\left(x-2\right)}\right)dx mit Hilfe der Summenregel für Integrale in 3 Integrale, um dann jedes Integral einzeln zu lösen. Das Integral \int\frac{-\frac{1}{3}x+\frac{3}{2}}{x^{2}+2}dx ergibt sich: \frac{1}{3}\ln\left(\frac{\sqrt{2}}{\sqrt{x^{2}+2}}\right)+\frac{3\arctan\left(\frac{x}{\sqrt{2}}\right)}{\sqrt{\left(2\right)^{3}}}.
int((4x^2+2x+-1)/(x^4-2x^2+-8))dx
Endgültige Antwort auf das Problem
$\frac{3\arctan\left(\frac{x}{\sqrt{2}}\right)}{\sqrt{\left(2\right)^{3}}}-\frac{1}{3}\ln\left|\sqrt{x^{2}+2}\right|-\frac{11}{24}\ln\left|x+2\right|+\frac{19}{24}\ln\left|x-2\right|+C_1$