Übung
$\int\frac{2x^2+3}{\left(x^2+4\right)\left(x-1\right)}dx$
Schritt-für-Schritt-Lösung
Learn how to solve addition von zahlen problems step by step online. int((2x^2+3)/((x^2+4)(x-1)))dx. Umschreiben des Bruchs \frac{2x^2+3}{\left(x^2+4\right)\left(x-1\right)} in 2 einfachere Brüche durch partielle Bruchzerlegung. Erweitern Sie das Integral \int\left(\frac{x+1}{x^2+4}+\frac{1}{x-1}\right)dx mit Hilfe der Summenregel für Integrale in 2 Integrale, um dann jedes Integral einzeln zu lösen. Das Integral \int\frac{x+1}{x^2+4}dx ergibt sich: -\ln\left(\frac{2}{\sqrt{x^2+4}}\right)+\frac{1}{2}\arctan\left(\frac{x}{2}\right). Sammeln Sie die Ergebnisse aller Integrale.
int((2x^2+3)/((x^2+4)(x-1)))dx
Endgültige Antwort auf das Problem
$\frac{1}{2}\arctan\left(\frac{x}{2}\right)+\ln\left|\sqrt{x^2+4}\right|+\ln\left|x-1\right|+C_1$