Übung
$\int\frac{1}{sinx+cosx-1}dx$
Schritt-für-Schritt-Lösung
Learn how to solve polynomielle faktorisierung problems step by step online. int(1/(sin(x)+cos(x)+-1))dx. Wir können das Integral \int\frac{1}{\sin\left(x\right)+\cos\left(x\right)-1}dx lösen, indem wir die Methode der Weierstraß-Substitution (auch bekannt als Tangens-Halbwinkel-Substitution) anwenden, die ein Integral trigonometrischer Funktionen in eine rationale Funktion von t umwandelt, indem wir die Substitution setzen. Daher. Setzt man das ursprüngliche Integral ein, erhält man. Vereinfachung.
int(1/(sin(x)+cos(x)+-1))dx
Endgültige Antwort auf das Problem
$\ln\left|\tan\left(\frac{x}{2}\right)\right|-\ln\left|1-\tan\left(\frac{x}{2}\right)\right|+C_0$