Wenden Sie die Formel an: $\int cxdx$$=c\int xdx$, wobei $c=\frac{1}{3}$ und $x=\sin\left(x\right)$
Wenden Sie die Formel an: $\int\sin\left(\theta \right)dx$$=-\cos\left(\theta \right)+C$
Wenden Sie die Formel an: $\frac{a}{b}c$$=\frac{ca}{b}$, wobei $a=1$, $b=3$, $c=-1$, $a/b=\frac{1}{3}$ und $ca/b=-\left(\frac{1}{3}\right)\cos\left(x\right)$
Da das Integral, das wir lösen, ein unbestimmtes Integral ist, müssen wir am Ende der Integration die Integrationskonstante hinzufügen $C$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!