Übung
$\frac { 6 x ^ { 3 } + 19 x ^ { 2 } + 16 x + 22 } { 3 x + 2 }$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3+19x^2+16x+22$ durch $3x+2$
$\begin{array}{l}\phantom{\phantom{;}3x\phantom{;}+2;}{\phantom{;}2x^{2}+5x\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;}3x\phantom{;}+2\overline{\smash{)}\phantom{;}6x^{3}+19x^{2}+16x\phantom{;}+22\phantom{;}\phantom{;}}\\\phantom{\phantom{;}3x\phantom{;}+2;}\underline{-6x^{3}-4x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}-4x^{2};}\phantom{;}15x^{2}+16x\phantom{;}+22\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+2-;x^n;}\underline{-15x^{2}-10x\phantom{;}\phantom{-;x^n}}\\\phantom{;-15x^{2}-10x\phantom{;}-;x^n;}\phantom{;}6x\phantom{;}+22\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+2-;x^n-;x^n;}\underline{-6x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{;;-6x\phantom{;}-4\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}18\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}+5x+2+\frac{18}{3x+2}$
Endgültige Antwort auf das Problem
$2x^{2}+5x+2+\frac{18}{3x+2}$