Übung
$\frac{z^{12}+4}{2+z^6}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $z^{12}+4$ durch $2+z^6$
$\begin{array}{l}\phantom{\phantom{;}z^{6}+2;}{\phantom{;}z^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-2\phantom{;}\phantom{;}}\\\phantom{;}z^{6}+2\overline{\smash{)}\phantom{;}z^{12}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}z^{6}+2;}\underline{-z^{12}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-2z^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-z^{12}-2z^{6};}-2z^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}z^{6}+2-;x^n;}\underline{\phantom{;}2z^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+4\phantom{;}\phantom{;}}\\\phantom{;\phantom{;}2z^{6}+4\phantom{;}\phantom{;}-;x^n;}\phantom{;}8\phantom{;}\phantom{;}\\\end{array}$
$z^{6}-2+\frac{8}{2+z^6}$
Endgültige Antwort auf das Problem
$z^{6}-2+\frac{8}{2+z^6}$