Übung
$\frac{x^7-1}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^7-1$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{7}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{7}-x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{7}-x^{6};}-x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}x^{6}+x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{6}+x^{5}-;x^n;}\phantom{;}x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-x^{5}-x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-x^{5}-x^{4}-;x^n-;x^n;}-x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{\phantom{;}x^{4}+x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}x^{4}+x^{3}-;x^n-;x^n-;x^n;}\phantom{;}x^{3}\phantom{-;x^n}\phantom{-;x^n}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n;}\underline{-x^{3}-x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;-x^{3}-x^{2}-;x^n-;x^n-;x^n-;x^n;}-x^{2}\phantom{-;x^n}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}x^{2}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;;;\phantom{;}x^{2}+x\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;;;;;;-x\phantom{;}-1\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-2\phantom{;}\phantom{;}\\\end{array}$
$x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1+\frac{-2}{x+1}$
Endgültige Antwort auf das Problem
$x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1+\frac{-2}{x+1}$