Übung
$\frac{x^6+2x^4+6x-9}{x^3+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^6+2x^4+6x-9$ durch $x^3+3$
$\begin{array}{l}\phantom{\phantom{;}x^{3}+3;}{\phantom{;}x^{3}\phantom{-;x^n}+2x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{;}x^{3}+3\overline{\smash{)}\phantom{;}x^{6}\phantom{-;x^n}+2x^{4}\phantom{-;x^n}\phantom{-;x^n}+6x\phantom{;}-9\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{3}+3;}\underline{-x^{6}\phantom{-;x^n}\phantom{-;x^n}-3x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{6}-3x^{3};}\phantom{;}2x^{4}-3x^{3}\phantom{-;x^n}+6x\phantom{;}-9\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{3}+3-;x^n;}\underline{-2x^{4}\phantom{-;x^n}\phantom{-;x^n}-6x\phantom{;}\phantom{-;x^n}}\\\phantom{;-2x^{4}-6x\phantom{;}-;x^n;}-3x^{3}\phantom{-;x^n}\phantom{-;x^n}-9\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{3}+3-;x^n-;x^n;}\underline{\phantom{;}3x^{3}\phantom{-;x^n}\phantom{-;x^n}+9\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}3x^{3}+9\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$x^{3}+2x-3$