Übung
$\frac{x^5-4x^3+2x-10}{x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^5-4x^3+2x-10$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}x^{4}-3x^{3}+5x^{2}-15x\phantom{;}+47\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}x^{5}\phantom{-;x^n}-4x^{3}\phantom{-;x^n}+2x\phantom{;}-10\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-x^{5}-3x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{5}-3x^{4};}-3x^{4}-4x^{3}\phantom{-;x^n}+2x\phantom{;}-10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}3x^{4}+9x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}3x^{4}+9x^{3}-;x^n;}\phantom{;}5x^{3}\phantom{-;x^n}+2x\phantom{;}-10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{-5x^{3}-15x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-5x^{3}-15x^{2}-;x^n-;x^n;}-15x^{2}+2x\phantom{;}-10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n-;x^n;}\underline{\phantom{;}15x^{2}+45x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}15x^{2}+45x\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}47x\phantom{;}-10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n-;x^n-;x^n;}\underline{-47x\phantom{;}-141\phantom{;}\phantom{;}}\\\phantom{;;;;-47x\phantom{;}-141\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n;}-151\phantom{;}\phantom{;}\\\end{array}$
$x^{4}-3x^{3}+5x^{2}-15x+47+\frac{-151}{x+3}$
Endgültige Antwort auf das Problem
$x^{4}-3x^{3}+5x^{2}-15x+47+\frac{-151}{x+3}$