Übung
$\frac{x^4-x^3-9x^2+3x+18}{x^2-3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-x^3-9x^2+3x+18$ durch $x^2-3$
$\begin{array}{l}\phantom{\phantom{;}x^{2}-3;}{\phantom{;}x^{2}-x\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{;}x^{2}-3\overline{\smash{)}\phantom{;}x^{4}-x^{3}-9x^{2}+3x\phantom{;}+18\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{2}-3;}\underline{-x^{4}\phantom{-;x^n}+3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}+3x^{2};}-x^{3}-6x^{2}+3x\phantom{;}+18\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}-3-;x^n;}\underline{\phantom{;}x^{3}\phantom{-;x^n}-3x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{3}-3x\phantom{;}-;x^n;}-6x^{2}\phantom{-;x^n}+18\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}-3-;x^n-;x^n;}\underline{\phantom{;}6x^{2}\phantom{-;x^n}-18\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}6x^{2}-18\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$x^{2}-x-6$