Übung
$\frac{x^4-x^3+x^2-3x-6}{x-1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-x^3+x^2-3x-6$ durch $x-1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-1;}{\phantom{;}x^{3}\phantom{-;x^n}+x\phantom{;}-2\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-1\overline{\smash{)}\phantom{;}x^{4}-x^{3}+x^{2}-3x\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-1;}\underline{-x^{4}+x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}+x^{3};}\phantom{;}x^{2}-3x\phantom{;}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n;}\underline{-x^{2}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;-x^{2}+x\phantom{;}-;x^n;}-2x\phantom{;}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-1-;x^n-;x^n;}\underline{\phantom{;}2x\phantom{;}-2\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}2x\phantom{;}-2\phantom{;}\phantom{;}-;x^n-;x^n;}-8\phantom{;}\phantom{;}\\\end{array}$
$x^{3}+x-2+\frac{-8}{x-1}$
Endgültige Antwort auf das Problem
$x^{3}+x-2+\frac{-8}{x-1}$