Übung
$\frac{x^4-x^2-2x-1}{x^2+x-1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-x^2-2x-1$ durch $x^2+x-1$
$\begin{array}{l}\phantom{\phantom{;}x^{2}+x\phantom{;}-1;}{\phantom{;}x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}x^{2}+x\phantom{;}-1\overline{\smash{)}\phantom{;}x^{4}\phantom{-;x^n}-x^{2}-2x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{2}+x\phantom{;}-1;}\underline{-x^{4}-x^{3}+x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-x^{3}+x^{2};}-x^{3}\phantom{-;x^n}-2x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}+x\phantom{;}-1-;x^n;}\underline{\phantom{;}x^{3}+x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{3}+x^{2}-x\phantom{;}-;x^n;}\phantom{;}x^{2}-3x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}+x\phantom{;}-1-;x^n-;x^n;}\underline{-x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;;-x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}-;x^n-;x^n;}-4x\phantom{;}\phantom{-;x^n}\\\end{array}$
$x^{2}-x+1+\frac{-4x}{x^2+x-1}$
Endgültige Antwort auf das Problem
$x^{2}-x+1+\frac{-4x}{x^2+x-1}$