Übung
$\frac{x^4-23x^2+24x+120}{x+5}\:$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-23x^2+24x+120$ durch $x+5$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+5;}{\phantom{;}x^{3}-5x^{2}+2x\phantom{;}+14\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+5\overline{\smash{)}\phantom{;}x^{4}\phantom{-;x^n}-23x^{2}+24x\phantom{;}+120\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+5;}\underline{-x^{4}-5x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-5x^{3};}-5x^{3}-23x^{2}+24x\phantom{;}+120\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n;}\underline{\phantom{;}5x^{3}+25x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}5x^{3}+25x^{2}-;x^n;}\phantom{;}2x^{2}+24x\phantom{;}+120\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n;}\underline{-2x^{2}-10x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-2x^{2}-10x\phantom{;}-;x^n-;x^n;}\phantom{;}14x\phantom{;}+120\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n-;x^n;}\underline{-14x\phantom{;}-70\phantom{;}\phantom{;}}\\\phantom{;;;-14x\phantom{;}-70\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}50\phantom{;}\phantom{;}\\\end{array}$
$x^{3}-5x^{2}+2x+14+\frac{50}{x+5}$
Endgültige Antwort auf das Problem
$x^{3}-5x^{2}+2x+14+\frac{50}{x+5}$