Übung
$\frac{x^4+2x^3-5x^2+2x-5}{x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4+2x^3-5x^2+2x-5$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}x^{3}-x^{2}-2x\phantom{;}+8\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}x^{4}+2x^{3}-5x^{2}+2x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-x^{4}-3x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-3x^{3};}-x^{3}-5x^{2}+2x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}x^{3}+3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{3}+3x^{2}-;x^n;}-2x^{2}+2x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{\phantom{;}2x^{2}+6x\phantom{;}\phantom{-;x^n}}\\\phantom{;;\phantom{;}2x^{2}+6x\phantom{;}-;x^n-;x^n;}\phantom{;}8x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n-;x^n;}\underline{-8x\phantom{;}-24\phantom{;}\phantom{;}}\\\phantom{;;;-8x\phantom{;}-24\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-29\phantom{;}\phantom{;}\\\end{array}$
$x^{3}-x^{2}-2x+8+\frac{-29}{x+3}$
Endgültige Antwort auf das Problem
$x^{3}-x^{2}-2x+8+\frac{-29}{x+3}$