Übung
$\frac{x^3-8x^2-29}{x+7}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-8x^2-29$ durch $x+7$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+7;}{\phantom{;}x^{2}-15x\phantom{;}+105\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+7\overline{\smash{)}\phantom{;}x^{3}-8x^{2}\phantom{-;x^n}-29\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+7;}\underline{-x^{3}-7x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-7x^{2};}-15x^{2}\phantom{-;x^n}-29\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+7-;x^n;}\underline{\phantom{;}15x^{2}+105x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}15x^{2}+105x\phantom{;}-;x^n;}\phantom{;}105x\phantom{;}-29\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+7-;x^n-;x^n;}\underline{-105x\phantom{;}-735\phantom{;}\phantom{;}}\\\phantom{;;-105x\phantom{;}-735\phantom{;}\phantom{;}-;x^n-;x^n;}-764\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-15x+105+\frac{-764}{x+7}$
Endgültige Antwort auf das Problem
$x^{2}-15x+105+\frac{-764}{x+7}$