Übung
$\frac{x^3-5x+3}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-5x+3$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{2}-x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{3}\phantom{-;x^n}-5x\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{3}-x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-x^{2};}-x^{2}-5x\phantom{;}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}x^{2}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}x^{2}+x\phantom{;}-;x^n;}-4x\phantom{;}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{\phantom{;}4x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}4x\phantom{;}+4\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}7\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-x-4+\frac{7}{x+1}$
Endgültige Antwort auf das Problem
$x^{2}-x-4+\frac{7}{x+1}$