Übung
$\frac{x^3-3x^2+6x+8}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-3x^2+6x+8$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{2}-4x\phantom{;}+10\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{3}-3x^{2}+6x\phantom{;}+8\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{3}-x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-x^{2};}-4x^{2}+6x\phantom{;}+8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}4x^{2}+4x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{2}+4x\phantom{;}-;x^n;}\phantom{;}10x\phantom{;}+8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-10x\phantom{;}-10\phantom{;}\phantom{;}}\\\phantom{;;-10x\phantom{;}-10\phantom{;}\phantom{;}-;x^n-;x^n;}-2\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-4x+10+\frac{-2}{x+1}$
Endgültige Antwort auf das Problem
$x^{2}-4x+10+\frac{-2}{x+1}$