Übung
$\frac{x^3-37x-1}{x-6}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-37x-1$ durch $x-6$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-6;}{\phantom{;}x^{2}+6x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-6\overline{\smash{)}\phantom{;}x^{3}\phantom{-;x^n}-37x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-6;}\underline{-x^{3}+6x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}+6x^{2};}\phantom{;}6x^{2}-37x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-6-;x^n;}\underline{-6x^{2}+36x\phantom{;}\phantom{-;x^n}}\\\phantom{;-6x^{2}+36x\phantom{;}-;x^n;}-x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-6-;x^n-;x^n;}\underline{\phantom{;}x\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}x\phantom{;}-6\phantom{;}\phantom{;}-;x^n-;x^n;}-7\phantom{;}\phantom{;}\\\end{array}$
$x^{2}+6x-1+\frac{-7}{x-6}$
Endgültige Antwort auf das Problem
$x^{2}+6x-1+\frac{-7}{x-6}$