Übung
$\frac{x^3-11x^2+25}{x-5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-11x^2+25$ durch $x-5$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-5;}{\phantom{;}x^{2}-6x\phantom{;}-30\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-5\overline{\smash{)}\phantom{;}x^{3}-11x^{2}\phantom{-;x^n}+25\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-5;}\underline{-x^{3}+5x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}+5x^{2};}-6x^{2}\phantom{-;x^n}+25\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-5-;x^n;}\underline{\phantom{;}6x^{2}-30x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}6x^{2}-30x\phantom{;}-;x^n;}-30x\phantom{;}+25\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-5-;x^n-;x^n;}\underline{\phantom{;}30x\phantom{;}-150\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}30x\phantom{;}-150\phantom{;}\phantom{;}-;x^n-;x^n;}-125\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-6x-30+\frac{-125}{x-5}$
Endgültige Antwort auf das Problem
$x^{2}-6x-30+\frac{-125}{x-5}$