Übung
$\frac{x^3+8x^2-7}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3+8x^2-7$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}x^{2}+6x\phantom{;}-12\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}x^{3}+8x^{2}\phantom{-;x^n}-7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-x^{3}-2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-2x^{2};}\phantom{;}6x^{2}\phantom{-;x^n}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{-6x^{2}-12x\phantom{;}\phantom{-;x^n}}\\\phantom{;-6x^{2}-12x\phantom{;}-;x^n;}-12x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{\phantom{;}12x\phantom{;}+24\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}12x\phantom{;}+24\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}17\phantom{;}\phantom{;}\\\end{array}$
$x^{2}+6x-12+\frac{17}{x+2}$
Endgültige Antwort auf das Problem
$x^{2}+6x-12+\frac{17}{x+2}$