Übung
$\frac{x^3+7x^2-14x+120}{x+6}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3+7x^2-14x+120$ durch $x+6$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+6;}{\phantom{;}x^{2}+x\phantom{;}-20\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+6\overline{\smash{)}\phantom{;}x^{3}+7x^{2}-14x\phantom{;}+120\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+6;}\underline{-x^{3}-6x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-6x^{2};}\phantom{;}x^{2}-14x\phantom{;}+120\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+6-;x^n;}\underline{-x^{2}-6x\phantom{;}\phantom{-;x^n}}\\\phantom{;-x^{2}-6x\phantom{;}-;x^n;}-20x\phantom{;}+120\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+6-;x^n-;x^n;}\underline{\phantom{;}20x\phantom{;}+120\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}20x\phantom{;}+120\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}240\phantom{;}\phantom{;}\\\end{array}$
$x^{2}+x-20+\frac{240}{x+6}$
Endgültige Antwort auf das Problem
$x^{2}+x-20+\frac{240}{x+6}$