Übung
$\frac{x^3+4}{x+4}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3+4$ durch $x+4$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+4;}{\phantom{;}x^{2}-4x\phantom{;}+16\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+4\overline{\smash{)}\phantom{;}x^{3}\phantom{-;x^n}\phantom{-;x^n}+4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+4;}\underline{-x^{3}-4x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-4x^{2};}-4x^{2}\phantom{-;x^n}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+4-;x^n;}\underline{\phantom{;}4x^{2}+16x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{2}+16x\phantom{;}-;x^n;}\phantom{;}16x\phantom{;}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+4-;x^n-;x^n;}\underline{-16x\phantom{;}-64\phantom{;}\phantom{;}}\\\phantom{;;-16x\phantom{;}-64\phantom{;}\phantom{;}-;x^n-;x^n;}-60\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-4x+16+\frac{-60}{x+4}$
Endgültige Antwort auf das Problem
$x^{2}-4x+16+\frac{-60}{x+4}$