Übung
$\frac{x^{13}-4}{x-4}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^{13}-4$ durch $x-4$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-4;}{\phantom{;}x^{12}+4x^{11}+16x^{10}+64x^{9}+256x^{8}+1024x^{7}+4096x^{6}+16384x^{5}+65536x^{4}+262144x^{3}+1048576x^{2}+4194304x\phantom{;}+16777216\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-4\overline{\smash{)}\phantom{;}x^{13}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-4;}\underline{-x^{13}+4x^{12}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{13}+4x^{12};}\phantom{;}4x^{12}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n;}\underline{-4x^{12}+16x^{11}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-4x^{12}+16x^{11}-;x^n;}\phantom{;}16x^{11}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n;}\underline{-16x^{11}+64x^{10}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-16x^{11}+64x^{10}-;x^n-;x^n;}\phantom{;}64x^{10}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n;}\underline{-64x^{10}+256x^{9}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;-64x^{10}+256x^{9}-;x^n-;x^n-;x^n;}\phantom{;}256x^{9}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n;}\underline{-256x^{9}+1024x^{8}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;-256x^{9}+1024x^{8}-;x^n-;x^n-;x^n-;x^n;}\phantom{;}1024x^{8}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-1024x^{8}+4096x^{7}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;-1024x^{8}+4096x^{7}-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}4096x^{7}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-4096x^{7}+16384x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;-4096x^{7}+16384x^{6}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}16384x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-16384x^{6}+65536x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;-16384x^{6}+65536x^{5}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}65536x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-65536x^{5}+262144x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;-65536x^{5}+262144x^{4}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}262144x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-262144x^{4}+1048576x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;-262144x^{4}+1048576x^{3}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}1048576x^{3}\phantom{-;x^n}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-1048576x^{3}+4194304x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;-1048576x^{3}+4194304x^{2}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}4194304x^{2}\phantom{-;x^n}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-4194304x^{2}+16777216x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;;-4194304x^{2}+16777216x\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}16777216x\phantom{;}-4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-16777216x\phantom{;}+67108864\phantom{;}\phantom{;}}\\\phantom{;;;;;;;;;;;;-16777216x\phantom{;}+67108864\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}67108860\phantom{;}\phantom{;}\\\end{array}$
$x^{12}+4x^{11}+16x^{10}+64x^{9}+256x^{8}+1024x^{7}+4096x^{6}+16384x^{5}+65536x^{4}+262144x^{3}+1048576x^{2}+4194304x+16777216+\frac{67108860}{x-4}$
Endgültige Antwort auf das Problem
$x^{12}+4x^{11}+16x^{10}+64x^{9}+256x^{8}+1024x^{7}+4096x^{6}+16384x^{5}+65536x^{4}+262144x^{3}+1048576x^{2}+4194304x+16777216+\frac{67108860}{x-4}$