Übung
$\frac{tan\left(9\pi\:\right)+tan\left(7\right)}{1-tan\left(9\pi\:\right)tan\left(7\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (tan(9pi)+tan(7))/(1-tan(9pi)tan(7)). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}, wobei x=7. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=-\sin\left(9\pi \right), b=\cos\left(9\pi \right), c=\sin\left(7\right), a/b=\frac{-\sin\left(9\pi \right)}{\cos\left(9\pi \right)}, f=\cos\left(7\right), c/f=\frac{\sin\left(7\right)}{\cos\left(7\right)} und a/bc/f=\frac{-\sin\left(9\pi \right)}{\cos\left(9\pi \right)}\cdot \frac{\sin\left(7\right)}{\cos\left(7\right)}. Wenden Sie die Formel an: a+\frac{b}{c}=\frac{b+ac}{c}, wobei a=1, b=-\sin\left(9\pi \right)\sin\left(7\right), c=\cos\left(9\pi \right)\cos\left(7\right), a+b/c=1+\frac{-\sin\left(9\pi \right)\sin\left(7\right)}{\cos\left(9\pi \right)\cos\left(7\right)} und b/c=\frac{-\sin\left(9\pi \right)\sin\left(7\right)}{\cos\left(9\pi \right)\cos\left(7\right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=\frac{\sin\left(9\pi \right)}{\cos\left(9\pi \right)}+\frac{\sin\left(7\right)}{\cos\left(7\right)}, b=-\sin\left(9\pi \right)\sin\left(7\right)+\cos\left(9\pi \right)\cos\left(7\right), c=\cos\left(9\pi \right)\cos\left(7\right), a/b/c=\frac{\frac{\sin\left(9\pi \right)}{\cos\left(9\pi \right)}+\frac{\sin\left(7\right)}{\cos\left(7\right)}}{\frac{-\sin\left(9\pi \right)\sin\left(7\right)+\cos\left(9\pi \right)\cos\left(7\right)}{\cos\left(9\pi \right)\cos\left(7\right)}} und b/c=\frac{-\sin\left(9\pi \right)\sin\left(7\right)+\cos\left(9\pi \right)\cos\left(7\right)}{\cos\left(9\pi \right)\cos\left(7\right)}.
(tan(9pi)+tan(7))/(1-tan(9pi)tan(7))
Endgültige Antwort auf das Problem
$\frac{\sin\left(9\pi \right)\cos\left(7\right)+\sin\left(7\right)\cos\left(9\pi \right)}{\cos\left(9\pi +7\right)}$