Übung
$\frac{tan\left(.008\right)}{tan\left(.005\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. tan(1/125)/tan(1/200). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}, wobei x=\frac{1}{200}. Wenden Sie die Formel an: \frac{\frac{a}{b}}{\frac{c}{f}}=\frac{af}{bc}, wobei a=\sin\left(8\times 10^{-3}\right), b=\cos\left(8\times 10^{-3}\right), a/b/c/f=\frac{\frac{\sin\left(8\times 10^{-3}\right)}{\cos\left(8\times 10^{-3}\right)}}{\frac{\sin\left(5\times 10^{-3}\right)}{\cos\left(5\times 10^{-3}\right)}}, c=\sin\left(5\times 10^{-3}\right), a/b=\frac{\sin\left(8\times 10^{-3}\right)}{\cos\left(8\times 10^{-3}\right)}, f=\cos\left(5\times 10^{-3}\right) und c/f=\frac{\sin\left(5\times 10^{-3}\right)}{\cos\left(5\times 10^{-3}\right)}. Anwendung der trigonometrischen Identität: \sin\left(x\right)\cos\left(y\right)=\frac{\sin\left(x+y\right)+\sin\left(x-y\right)}{2}, wobei x=\frac{1}{200} und y=\frac{1}{125}. .
Endgültige Antwort auf das Problem
$\frac{\sin\left(0.013\right)+\sin\left(3\times 10^{-3}\right)}{\sin\left(0.013\right)+\sin\left(-3\times 10^{-3}\right)}$