Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Exakte Differentialgleichung
- Lineare Differentialgleichung
- Trennbare Differentialgleichung
- Homogene Differentialgleichung
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Teilen Sie alle Terme der Differentialgleichung durch $\cos\left(x\right)$
Learn how to solve problems step by step online.
$\frac{dy}{dx}\frac{\cos\left(x\right)}{\cos\left(x\right)}+\frac{y\sin\left(x\right)}{\cos\left(x\right)}=\frac{1}{\cos\left(x\right)}$
Learn how to solve problems step by step online. dy/dxcos(x)+ysin(x)=1. Teilen Sie alle Terme der Differentialgleichung durch \cos\left(x\right). Vereinfachung. Wir können erkennen, dass die Differentialgleichung die Form hat: \frac{dy}{dx} + P(x)\cdot y(x) = Q(x), so dass wir sie als lineare Differentialgleichung erster Ordnung einstufen können, wobei P(x)=\frac{\sin\left(x\right)}{\cos\left(x\right)} und Q(x)=\frac{1}{\cos\left(x\right)}. Um die Differentialgleichung zu lösen, müssen wir zunächst den integrierenden Faktor finden \mu(x). Um \mu(x) zu finden, müssen wir zunächst Folgendes berechnen \int P(x)dx.