Wenden Sie die Formel an: $\frac{d}{dx}\left(a=b\right)$$=\frac{d}{dx}\left(a\right)=\frac{d}{dx}\left(b\right)$, wobei $a=x^x$ und $b=y$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x\right)$$=1$
Die Ableitung $\frac{d}{dx}\left(x^x\right)$ führt zu $\left(\ln\left(x\right)+1\right)x^x$
Wenden Sie die Formel an: $a=b$$\to b=a$, wobei $a=\left(\ln\left(x\right)+1\right)x^x$ und $b=y^{\prime}$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!