Lösen: $\frac{d}{dx}\left(\sqrt{\frac{x^2-16}{x^2+16}}\right)$
Übung
$\frac{dy}{dx}\left(\sqrt{\frac{\left(x^2-16\right)}{\left(x^2+16\right)}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. d/dx(((x^2-16)/(x^2+16))^(1/2)). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=\frac{1}{2} und x=\frac{x^2-16}{x^2+16}. Wenden Sie die Formel an: \left(\frac{a}{b}\right)^n=\left(\frac{b}{a}\right)^{\left|n\right|}, wobei a=x^2-16, b=x^2+16 und n=-\frac{1}{2}. Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=x^2-16 und b=x^2+16. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=1, b=2, c=\frac{d}{dx}\left(x^2-16\right)\left(x^2+16\right)-\left(x^2-16\right)\frac{d}{dx}\left(x^2+16\right), a/b=\frac{1}{2}, f=\left(x^2+16\right)^2, c/f=\frac{\frac{d}{dx}\left(x^2-16\right)\left(x^2+16\right)-\left(x^2-16\right)\frac{d}{dx}\left(x^2+16\right)}{\left(x^2+16\right)^2} und a/bc/f=\frac{1}{2}\sqrt{\frac{x^2+16}{x^2-16}}\frac{\frac{d}{dx}\left(x^2-16\right)\left(x^2+16\right)-\left(x^2-16\right)\frac{d}{dx}\left(x^2+16\right)}{\left(x^2+16\right)^2}.
d/dx(((x^2-16)/(x^2+16))^(1/2))
Endgültige Antwort auf das Problem
$\frac{32x}{\sqrt{\left(x^2+16\right)^{3}}\sqrt{x^2-16}}$