Lösen: $\frac{d}{dx}\left(\frac{x\sqrt{x^2+5}}{\sqrt[3]{\left(x+8\right)^{2}}}\right)$
Übung
$\frac{dy}{dx}\left(\frac{x\sqrt{x^2+5}}{\left(x+8\right)^{\frac{2}{3}}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dx((x(x^2+5)^(1/2))/((x+8)^(2/3))). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{x\sqrt{x^2+5}}{\sqrt[3]{\left(x+8\right)^{2}}}\right) und x=\frac{x\sqrt{x^2+5}}{\sqrt[3]{\left(x+8\right)^{2}}}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{x\sqrt{x^2+5}}{\sqrt[3]{\left(x+8\right)^{2}}}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{x\sqrt{x^2+5}}{\sqrt[3]{\left(x+8\right)^{2}}}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=\ln\left(x\right)+\frac{1}{2}\ln\left(x^2+5\right)- \left(\frac{2}{3}\right)\ln\left(x+8\right).
Find the derivative d/dx((x(x^2+5)^(1/2))/((x+8)^(2/3)))
Endgültige Antwort auf das Problem
$\left(\frac{1}{x}+\frac{x}{x^2+5}+\frac{-2}{3\left(x+8\right)}\right)\frac{x\sqrt{x^2+5}}{\sqrt[3]{\left(x+8\right)^{2}}}$