Übung
$\frac{d}{dx}\sqrt{\frac{a^2+x^2}{a^2-x^2}}$
Schritt-für-Schritt-Lösung
Learn how to solve besondere produkte problems step by step online. d/dx(((a^2+x^2)/(a^2-x^2))^(1/2)). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=\frac{1}{2} und x=\frac{a^2+x^2}{a^2-x^2}. Wenden Sie die Formel an: \left(\frac{a}{b}\right)^n=\left(\frac{b}{a}\right)^{\left|n\right|}, wobei a=a^2+x^2, b=a^2-x^2 und n=-\frac{1}{2}. Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=a^2+x^2 und b=a^2-x^2. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=1, b=2, c=\frac{d}{dx}\left(a^2+x^2\right)\left(a^2-x^2\right)-\left(a^2+x^2\right)\frac{d}{dx}\left(a^2-x^2\right), a/b=\frac{1}{2}, f=\left(a^2-x^2\right)^2, c/f=\frac{\frac{d}{dx}\left(a^2+x^2\right)\left(a^2-x^2\right)-\left(a^2+x^2\right)\frac{d}{dx}\left(a^2-x^2\right)}{\left(a^2-x^2\right)^2} und a/bc/f=\frac{1}{2}\sqrt{\frac{a^2-x^2}{a^2+x^2}}\frac{\frac{d}{dx}\left(a^2+x^2\right)\left(a^2-x^2\right)-\left(a^2+x^2\right)\frac{d}{dx}\left(a^2-x^2\right)}{\left(a^2-x^2\right)^2}.
d/dx(((a^2+x^2)/(a^2-x^2))^(1/2))
Endgültige Antwort auf das Problem
$\frac{2xa^2}{\sqrt{\left(a^2-x^2\right)^{3}}\sqrt{a^2+x^2}}$