Übung
$\frac{d}{dx}\sqrt[5]{\frac{x^2+3}{x^2+4}}$
Schritt-für-Schritt-Lösung
Learn how to solve grenzwerte durch direkte substitution problems step by step online. d/dx(((x^2+3)/(x^2+4))^(1/5)). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=\frac{1}{5} und x=\frac{x^2+3}{x^2+4}. Wenden Sie die Formel an: \left(\frac{a}{b}\right)^n=\left(\frac{b}{a}\right)^{\left|n\right|}, wobei a=x^2+3, b=x^2+4 und n=-\frac{4}{5}. Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=x^2+3 und b=x^2+4. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=1, b=5, c=\frac{d}{dx}\left(x^2+3\right)\left(x^2+4\right)-\left(x^2+3\right)\frac{d}{dx}\left(x^2+4\right), a/b=\frac{1}{5}, f=\left(x^2+4\right)^2, c/f=\frac{\frac{d}{dx}\left(x^2+3\right)\left(x^2+4\right)-\left(x^2+3\right)\frac{d}{dx}\left(x^2+4\right)}{\left(x^2+4\right)^2} und a/bc/f=\frac{1}{5}\sqrt[5]{\left(\frac{x^2+4}{x^2+3}\right)^{4}}\frac{\frac{d}{dx}\left(x^2+3\right)\left(x^2+4\right)-\left(x^2+3\right)\frac{d}{dx}\left(x^2+4\right)}{\left(x^2+4\right)^2}.
d/dx(((x^2+3)/(x^2+4))^(1/5))
Endgültige Antwort auf das Problem
$\frac{2x\left(x^2+4\right)+2\left(-x^2-3\right)x}{5\left(x^2+4\right)^2}\sqrt[5]{\left(\frac{x^2+4}{x^2+3}\right)^{4}}$