Übung
$\frac{d}{dx}\sqrt[3]{\frac{x^2\cdot\left(x^2+1\right)^3}{\left(2x+1\right)^5}}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. d/dx(((x^2(x^2+1)^3)/((2x+1)^5))^(1/3)). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=\frac{1}{3} und x=\frac{x^2\left(x^2+1\right)^3}{\left(2x+1\right)^5}. Wenden Sie die Formel an: \left(\frac{a}{b}\right)^n=\left(\frac{b}{a}\right)^{\left|n\right|}, wobei a=x^2\left(x^2+1\right)^3, b=\left(2x+1\right)^5 und n=-\frac{2}{3}. Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=x^2\left(x^2+1\right)^3 und b=\left(2x+1\right)^5. Simplify \left(\left(2x+1\right)^5\right)^2 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 5 and n equals 2.
d/dx(((x^2(x^2+1)^3)/((2x+1)^5))^(1/3))
Endgültige Antwort auf das Problem
$\frac{\left(2x\left(x^2+1\right)^3+6x^{3}\left(x^2+1\right)^{2}\right)\left(2x+1\right)^5-10x^2\left(x^2+1\right)^3\left(2x+1\right)^{4}}{3\left(2x+1\right)^{10}}\sqrt[3]{\left(\frac{\left(2x+1\right)^5}{x^2\left(x^2+1\right)^3}\right)^{2}}$