Übung
$\frac{d}{dx}\left[\left(1+2x\right)^6\left(x^4+x+2\right)\right]^{\frac{2}{3}}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. d/dx(((1+2x)^6(x^4+x+2))^(2/3)). Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n. Simplify \sqrt[3]{\left(\left(1+2x\right)^6\right)^{2}} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 6 and n equals \frac{2}{3}. Wenden Sie die Formel an: \frac{d}{dx}\left(ab\right)=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right), wobei d/dx=\frac{d}{dx}, ab=\left(1+2x\right)^{4}\sqrt[3]{\left(x^4+x+2\right)^{2}}, a=\left(1+2x\right)^{4}, b=\sqrt[3]{\left(x^4+x+2\right)^{2}} und d/dx?ab=\frac{d}{dx}\left(\left(1+2x\right)^{4}\sqrt[3]{\left(x^4+x+2\right)^{2}}\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=4 und x=1+2x.
d/dx(((1+2x)^6(x^4+x+2))^(2/3))
Endgültige Antwort auf das Problem
$8\left(1+2x\right)^{3}\sqrt[3]{\left(x^4+x+2\right)^{2}}+\frac{2\left(1+2x\right)^{4}\left(4x^{3}+1\right)}{3\sqrt[3]{x^4+x+2}}$