Wenden Sie die Formel an: $\frac{d}{dx}\left(a=b\right)$$=\frac{d}{dx}\left(a\right)=\frac{d}{dx}\left(b\right)$, wobei $a=y$ und $b=8x^{\ln\left(x\right)}$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x\right)$$=1$
Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$
Die Ableitung $\frac{d}{dx}\left(x^{\ln\left(x\right)}\right)$ führt zu $2x^{\left(\ln\left(x\right)-1\right)}\ln\left(x\right)$
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!