Übung
$\frac{d}{dx}\left(x^x\right)\:\left(x^3\:+\:2\right)2\left(x^4\:+\:4\right)^4$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. d/dx(x^x(x^3+2)*2(x^4+4)^4). Wenden Sie die Formel an: \frac{d}{dx}\left(cx\right)=c\frac{d}{dx}\left(x\right). Wenden Sie die Formel an: \frac{d}{dx}\left(ab\right)=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right), wobei d/dx=\frac{d}{dx}, ab=x^x\left(x^3+2\right)\left(x^4+4\right)^4, a=x^x, b=\left(x^3+2\right)\left(x^4+4\right)^4 und d/dx?ab=\frac{d}{dx}\left(x^x\left(x^3+2\right)\left(x^4+4\right)^4\right). Wenden Sie die Formel an: \frac{d}{dx}\left(ab\right)=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right), wobei d/dx=\frac{d}{dx}, ab=\left(x^3+2\right)\left(x^4+4\right)^4, a=x^3+2, b=\left(x^4+4\right)^4 und d/dx?ab=\frac{d}{dx}\left(\left(x^3+2\right)\left(x^4+4\right)^4\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=4 und x=x^4+4.
d/dx(x^x(x^3+2)*2(x^4+4)^4)
Endgültige Antwort auf das Problem
$2\left(\left(\ln\left(x\right)+1\right)x^x\left(x^3+2\right)\left(x^4+4\right)^4+x^x\left(3x^{2}\left(x^4+4\right)^4+16\left(x^3+2\right)\left(x^4+4\right)^{3}x^{3}\right)\right)$