Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Wenden Sie die Formel an: $\frac{d}{dx}\left(a=b\right)$$=\frac{d}{dx}\left(a\right)=\frac{d}{dx}\left(b\right)$, wobei $a=x^3+y^3$ und $b=6xy$
Learn how to solve problems step by step online.
$\frac{d}{dx}\left(x^3+y^3\right)=\frac{d}{dx}\left(6xy\right)$
Learn how to solve problems step by step online. d/dx(x^3+y^3=6xy). Wenden Sie die Formel an: \frac{d}{dx}\left(a=b\right)=\frac{d}{dx}\left(a\right)=\frac{d}{dx}\left(b\right), wobei a=x^3+y^3 und b=6xy. Wenden Sie die Formel an: \frac{d}{dx}\left(cx\right)=c\frac{d}{dx}\left(x\right). Wenden Sie die Formel an: \frac{d}{dx}\left(ab\right)=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right), wobei d/dx=\frac{d}{dx}, ab=xy, a=x, b=y und d/dx?ab=\frac{d}{dx}\left(xy\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=1.