Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$
Learn how to solve differentialrechnung problems step by step online.
$2\frac{d}{dx}\left(x^3\mathrm{tanh}\left(\frac{1}{x^2}\right)\right)$
Learn how to solve differentialrechnung problems step by step online. d/dx(2x^3tanh(1/(x^2))). Wenden Sie die Formel an: \frac{d}{dx}\left(cx\right)=c\frac{d}{dx}\left(x\right). Wenden Sie die Formel an: \frac{d}{dx}\left(ab\right)=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right), wobei d/dx=\frac{d}{dx}, ab=x^3\mathrm{tanh}\left(\frac{1}{x^2}\right), a=x^3, b=\mathrm{tanh}\left(\frac{1}{x^2}\right) und d/dx?ab=\frac{d}{dx}\left(x^3\mathrm{tanh}\left(\frac{1}{x^2}\right)\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}. Anwendung der trigonometrischen Identität: \frac{d}{dx}\left(\mathrm{tanh}\left(\theta \right)\right)=\mathrm{sech}\left(\theta \right)^2\frac{d}{dx}\left(\theta \right), wobei x=\frac{1}{x^2}.