Themen

Übung

$\frac{d}{dx}\left(\left(x^2+3\right)^{5x-1}\right)$

Schritt-für-Schritt-Lösung

1

Wenden Sie die Formel an: $\frac{d}{dx}\left(a^b\right)$$=y=a^b$, wobei $d/dx=\frac{d}{dx}$, $a=x^2+3$, $b=5x-1$, $a^b=\left(x^2+3\right)^{\left(5x-1\right)}$ und $d/dx?a^b=\frac{d}{dx}\left(\left(x^2+3\right)^{\left(5x-1\right)}\right)$

$y=\left(x^2+3\right)^{\left(5x-1\right)}$
2

Wenden Sie die Formel an: $y=a^b$$\to \ln\left(y\right)=\ln\left(a^b\right)$, wobei $a=x^2+3$ und $b=5x-1$

$\ln\left(y\right)=\ln\left(\left(x^2+3\right)^{\left(5x-1\right)}\right)$
3

Wenden Sie die Formel an: $\ln\left(x^a\right)$$=a\ln\left(x\right)$, wobei $a=5x-1$ und $x=x^2+3$

$\ln\left(y\right)=\left(5x-1\right)\ln\left(x^2+3\right)$
4

Wenden Sie die Formel an: $\ln\left(y\right)=x$$\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right)$, wobei $x=\left(5x-1\right)\ln\left(x^2+3\right)$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(\left(5x-1\right)\ln\left(x^2+3\right)\right)$
5

Wenden Sie die Formel an: $\frac{d}{dx}\left(ab\right)$$=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right)$, wobei $d/dx=\frac{d}{dx}$, $ab=\left(5x-1\right)\ln\left(x^2+3\right)$, $a=5x-1$, $b=\ln\left(x^2+3\right)$ und $d/dx?ab=\frac{d}{dx}\left(\left(5x-1\right)\ln\left(x^2+3\right)\right)$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(5x-1\right)\ln\left(x^2+3\right)+\left(5x-1\right)\frac{d}{dx}\left(\ln\left(x^2+3\right)\right)$
6

Wenden Sie die Formel an: $\frac{d}{dx}\left(\ln\left(x\right)\right)$$=\frac{1}{x}\frac{d}{dx}\left(x\right)$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(5x-1\right)\ln\left(x^2+3\right)+\left(5x-1\right)\frac{1}{x^2+3}\frac{d}{dx}\left(x^2+3\right)$
7

Wenden Sie die Formel an: $\frac{d}{dx}\left(x\right)$$=1$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(5x-1\right)\ln\left(x^2+3\right)+\left(5x-1\right)\frac{1}{x^2+3}\frac{d}{dx}\left(x^2+3\right)$
8

Die Ableitung einer Summe von zwei oder mehr Funktionen ist die Summe der Ableitungen der einzelnen Funktionen

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(5x\right)\ln\left(x^2+3\right)+\left(5x-1\right)\frac{1}{x^2+3}\frac{d}{dx}\left(x^2+3\right)$
9

Die Ableitung einer Summe von zwei oder mehr Funktionen ist die Summe der Ableitungen der einzelnen Funktionen

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(5x\right)\ln\left(x^2+3\right)+\left(5x-1\right)\frac{1}{x^2+3}\frac{d}{dx}\left(x^2\right)$
10

Wenden Sie die Formel an: $\frac{d}{dx}\left(nx\right)$$=n\frac{d}{dx}\left(x\right)$, wobei $n=5$

$\frac{y^{\prime}}{y}=5\frac{d}{dx}\left(x\right)\ln\left(x^2+3\right)+\left(5x-1\right)\frac{1}{x^2+3}\frac{d}{dx}\left(x^2\right)$
11

Wenden Sie die Formel an: $\frac{d}{dx}\left(x\right)$$=1$

$\frac{y^{\prime}}{y}=5\ln\left(x^2+3\right)+\left(5x-1\right)\frac{1}{x^2+3}\frac{d}{dx}\left(x^2\right)$
12

Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}$, wobei $a=2$

$\frac{y^{\prime}}{y}=5\ln\left(x^2+3\right)+2\left(5x-1\right)\frac{1}{x^2+3}x$
13

Wenden Sie die Formel an: $a\frac{b}{x}$$=\frac{ab}{x}$

$\frac{y^{\prime}}{y}=5\ln\left(x^2+3\right)+\frac{2\left(5x-1\right)x}{x^2+3}$
14

Wenden Sie die Formel an: $\frac{a}{b}=c$$\to a=cb$, wobei $a=y^{\prime}$, $b=y$ und $c=5\ln\left(x^2+3\right)+\frac{2\left(5x-1\right)x}{x^2+3}$

$y^{\prime}=\left(5\ln\left(x^2+3\right)+\frac{2\left(5x-1\right)x}{x^2+3}\right)y$
15

Ersetzen Sie $y$ durch die ursprüngliche Funktion: $\left(x^2+3\right)^{\left(5x-1\right)}$

$y^{\prime}=\left(5\ln\left(x^2+3\right)+\frac{2\left(5x-1\right)x}{x^2+3}\right)\left(x^2+3\right)^{\left(5x-1\right)}$
16

Die Ableitung der Funktion ergibt sich zu

$\left(5\ln\left(x^2+3\right)+\frac{2\left(5x-1\right)x}{x^2+3}\right)\left(x^2+3\right)^{\left(5x-1\right)}$

Endgültige Antwort auf das Problem

$\left(5\ln\left(x^2+3\right)+\frac{2\left(5x-1\right)x}{x^2+3}\right)\left(x^2+3\right)^{\left(5x-1\right)}$

Wie sollte ich dieses Problem lösen?

  • Wählen Sie eine Option
  • Produkt von Binomischen mit gemeinsamem Term
  • FOIL Method
  • Mehr laden...
Sie können eine Methode nicht finden? Sagen Sie es uns, damit wir sie hinzufügen können.
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Ihr persönlicher Mathe-Nachhilfelehrer. Angetrieben von KI

Verfügbar 24/7, 365.

Vollständige Schritt-für-Schritt-Lösungen für Mathe. Keine Werbung.

premium.benefit8

Enthält mehrere Lösungsmethoden.

Laden Sie Lösungen im PDF-Format.

Premium-Zugang über unsere iOS- und Android-Apps.

Schließen Sie sich 500k+ Schülern bei der Lösung von Problemen an.

Wählen Sie Ihren Plan. Jederzeit kündigen.
Zahlen Sie $39,97 USD sicher mit Ihrer Zahlungsmethode.
Bitte warten Sie, während Ihre Zahlung bearbeitet wird.

Ein Konto erstellen