Übung
$\frac{d}{dx}\left(\frac{x^8\left(x-3\right)^4}{\left(x^2+7\right)^8}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve multiplikation ganzer zahlen problems step by step online. Find the derivative d/dx((x^8(x-3)^4)/((x^2+7)^8)). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{x^8\left(x-3\right)^4}{\left(x^2+7\right)^8}\right) und x=\frac{x^8\left(x-3\right)^4}{\left(x^2+7\right)^8}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{x^8\left(x-3\right)^4}{\left(x^2+7\right)^8}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{x^8\left(x-3\right)^4}{\left(x^2+7\right)^8}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=8\ln\left(x\right)+4\ln\left(x-3\right)-8\ln\left(x^2+7\right).
Find the derivative d/dx((x^8(x-3)^4)/((x^2+7)^8))
Endgültige Antwort auf das Problem
$\left(\frac{8}{x}+\frac{4}{x-3}+\frac{-16x}{x^2+7}\right)\frac{x^8\left(x-3\right)^4}{\left(x^2+7\right)^8}$