Übung
$\frac{d}{dx}\left(\frac{x^2-4}{6\left(x^2-4\right)-\sqrt{x^2-4}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve grenzen der unendlichkeit problems step by step online. Find the derivative d/dx((x^2-4)/(6(x^2-4)-(x^2-4)^(1/2))). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{x^2-4}{6\left(x^2-4\right)-\sqrt{x^2-4}}\right) und x=\frac{x^2-4}{6\left(x^2-4\right)-\sqrt{x^2-4}}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{x^2-4}{6\left(x^2-4\right)-\sqrt{x^2-4}}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{x^2-4}{6\left(x^2-4\right)-\sqrt{x^2-4}}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=\ln\left(x^2-4\right)-\ln\left(6\left(x^2-4\right)-\sqrt{x^2-4}\right).
Find the derivative d/dx((x^2-4)/(6(x^2-4)-(x^2-4)^(1/2)))
Endgültige Antwort auf das Problem
$\left(\frac{2x}{x^2-4}+\frac{-12x\sqrt{x^2-4}+x}{\sqrt{x^2-4}\left(6x^2-24-\sqrt{x^2-4}\right)}\right)\frac{x^2-4}{6\left(x^2-4\right)-\sqrt{x^2-4}}$