Übung
$\frac{d}{dx}\left(\frac{x^{\frac{3}{4}}\cdot sqrt\left(x^2+1\right)}{\left(3x+2\right)^5}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dx((x^(3/4)(x^2+1)^1/2)/((3x+2)^5)). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{\sqrt[4]{x^{3}}\left(x^2+1\right)^{0.5}}{\left(3x+2\right)^5}\right) und x=\frac{\sqrt[4]{x^{3}}\left(x^2+1\right)^{0.5}}{\left(3x+2\right)^5}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{\sqrt[4]{x^{3}}\left(x^2+1\right)^{0.5}}{\left(3x+2\right)^5}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{\sqrt[4]{x^{3}}\left(x^2+1\right)^{0.5}}{\left(3x+2\right)^5}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=\frac{3}{4}\ln\left(x\right)+0.5\ln\left(x^2+1\right)-5\ln\left(3x+2\right).
Find the derivative d/dx((x^(3/4)(x^2+1)^1/2)/((3x+2)^5))
Endgültige Antwort auf das Problem
$\left(\frac{3}{4x}+\frac{x}{x^2+1}+\frac{-15}{3x+2}\right)\frac{\sqrt[4]{x^{3}}\left(x^2+1\right)^{0.5}}{\left(3x+2\right)^5}$